https://thewideinfo.com/ Could Western management techniques be successfully implemented in the countries of Central and Eastern Europe (CEE)? Granted, they have to be adapted, modified and cannot be imported in their entirety. But their crux, their inalienable nucleus – can this be transported and transplanted in CEE? Theory provides us with a positive answer. Human agents are the same everywhere and are mostly rational. Practice begs to differ. Basic concepts such as the money value of time or the moral and legal meaning of property are non existent. The legal, political and economic environments are all unpredictable. As a result, economic players will prefer to maximize their utility immediately (steal from the workplace, for instance) – than to wait for longer term (potentially, larger) benefits. Warrants (stock options) convertible to the company’s shares constitute a strong workplace incentive in the West (because there is an horizon and they increase the employee’s welfare in the long term). Where the future is speculation – speculation withers. Stock options or a small stake in his firm, will only encourage the employee to blackmail the other shareholders by paralysing the firm, to abuse his new position and will be interpreted as immunity, conferred from above, from the consequences of illegal activities. The very allocation of options or shares will be interpreted as a sign of weakness, dependence and need, to be exploited. Hierarchy is equated with slavery and employees will rather harm their long term interests than follow instructions or be subjected to criticism – never mind how constructive. The employees in CEE regard the corporate environment as a conflict zone, a zero sum game (in which the gains by some equal the losses to others). In the West, the employees participate in the increase in the firm’s value. The difference between these attitudes is irreconcilable.
Now, let us consider this:
An entrepreneur is a person who is gifted at identifying the unsatisfied needs of a market, at mobilizing and organizing the resources required to satisfy those needs and at defining a long-term strategy of development and marketing. As the enterprise grows, two processes combine to denude the entrepreneur of some of his initial functions. The firm has ever growing needs for capital: financial, human, assets and so on. Additionally, the company begins (or should begin) to interface and interact with older, better established firms. Thus, the company is forced to create its first management team: a general manager with the right doses of respectability, connections and skills, a chief financial officer, a host of consultants and so on. In theory – if all our properly motivated financially – all these players (entrepreneurs and managers) will seek to maximize the value of the firm. What happens, in reality, is that both work to minimize it, each for its own reasons. The managers seek to maximize their short-term utility by securing enormous pay packages and other forms of company-dilapidating compensation. The entrepreneurs feel that they are “strangled”, “shackled”, “held back” by bureaucracy and they “rebel”. They oust the management, or undermine it, turning it into an ineffective representative relic. They assume real, though informal, control of the firm. They do so by defining a new set of strategic goals for the firm, which call for the institution of an entrepreneurial rather than a bureaucratic type of management. These cycles of initiative-consolidation-new initiative-revolution-consolidation are the dynamos of company growth. Growth leads to maximization of value. However, the players don’t know or do not fully believe that they are in the process of maximizing the company’s worth. On the contrary, consciously, the managers say: “Let’s maximize the benefits that we derive from this company, as long as we are still here.” The entrepreneurs-owners say: “We cannot tolerate this stifling bureaucracy any longer. We prefer to have a smaller company – but all ours.” The growth cycles forces the entrepreneurs to dilute their holdings (in order to raise the capital necessary to finance their initiatives). This dilution (the fracturing of the ownership structure) is what brings the last cycle to its end. The holdings of the entrepreneurs are too small to materialize a coup against the management. The management then prevails and the entrepreneurs are neutralized and move on to establish another start-up. The only thing that they leave behind them is their names and their heirs.
We can use Game Theory methods to analyse both these situations. Wherever we have economic players bargaining for the allocation of scarce resources in order to attain their utility functions, to secure the outcomes and consequences (the value, the preference, that the player attaches to his outcomes) which are right for them – we can use Game Theory (GT).
A short recap of the basic tenets of the theory might be in order.
GT deals with interactions between agents, whether conscious and intelligent – or Dennettic. A Dennettic Agent (DA) is an agent that acts so as to influence the future allocation of resources, but does not need to be either conscious or deliberative to do so. A Game is the set of acts committed by 1 to n rational DA and one a-rational (not irrational but devoid of rationality) DA (nature, a random mechanism). At least 1 DA in a Game must control the result of the set of acts and the DAs must be (at least potentially) at conflict, whole or partial. This is not to say that all the DAs aspire to the same things. They have different priorities and preferences. They rank the likely outcomes of their acts differently. They engage Strategies to obtain their highest ranked outcome. A Strategy is a vector, which details the acts, with which the DA will react in response to all the (possible) acts by the other DAs. An agent is said to be rational if his Strategy does guarantee the attainment of his most preferred goal. Nature is involved by assigning probabilities to the outcomes. An outcome, therefore, is an allocation of resources resulting from the acts of the agents. An agent is said to control the situation if its acts matter to others to the extent that at least one of them is forced to alter at least one vector (Strategy). The Consequence to the agent is the value of a function that assigns real numbers to each of the outcomes. The consequence represents a list of outcomes, prioritized, ranked. It is also known as an ordinal utility function. If the function includes relative numerical importance measures (not only real numbers) – we call it a Cardinal Utility Function. https://klaseo.com/
Games, naturally, can consist of one player, two players and more than two players (n-players). They can be zero (or fixed) – sum (the sum of benefits is fixed and whatever gains made by one of the players are lost by the others). They can be nonzero-sum (the amount of benefits to all players can increase or decrease). Games can be cooperative (where some of the players or all of them form coalitions) – or non-cooperative (competitive). For some of the games, the solutions are called Nash equilibria. They are sets of strategies constructed so that an agent which adopts them (and, as a result, secures a certain outcome) will have no incentive to switch over to other strategies (given the strategies of all other players). Nash equilibria (solutions) are the most stable (it is where the system “settles down”, to borrow from Chaos Theory) – but they are not guaranteed to be the most desirable. Consider the famous “Prisoners’ Dilemma” in which both players play rationally and reach the Nash equilibrium only to discover that they could have done much better by collaborating (that is, by playing irrationally). Instead, they adopt the “Paretto-dominated”, or the “Paretto-optimal”, sub-optimal solution. Any outside interference with the game (for instance, legislation) will be construed as creating a NEW game, not as pushing the players to adopt a “Paretto-superior” solution.
The behaviour of the players reveals to us their order of preferences. This is called “Preference Ordering” or “Revealed Preference Theory”. Agents are faced with sets of possible states of the world (=allocations of resources, to be more economically inclined). These are called “Bundles”. In certain cases they can trade their bundles, swap them with others. The evidence of these swaps will inevitably reveal to us the order of priorities of the agent. All the bundles that enjoy the same ranking by a given agent – are this agent’s “Indifference Sets”. The construction of an Ordinal Utility Function is, thus, made simple. The indifference sets are numbered from 1 to n. These ordinals do not reveal the INTENSITY or the RELATIVE INTENSITY of a preference – merely its location in a list. However, techniques are available to transform the ordinal utility function – into a cardinal one.
A Stable Strategy is similar to a Nash solution – though not identical mathematically. There is currently no comprehensive theory of Information Dynamics. Game Theory is limited to the aspects of competition and exchange of information (cooperation). Strategies that lead to better results (independently of other agents) are dominant and where all the agents have dominant strategies – a solution is established. Thus, the Nash equilibrium is applicable to games that are repeated and wherein each agent reacts to the acts of other agents. The agent is influenced by others – but does not influence them (he is negligible). The agent continues to adapt in this way – until no longer able to improve his position. The Nash solution is less available in cases of cooperation and is not unique as a solution. In most cases, the players will adopt a minimax strategy (in zero-sum games) or maximin strategies (in nonzero-sum games). These strategies guarantee that the loser will not lose more than the value of the game and that the winner will gain at least this value. The solution is the “Saddle Point”.